

A NEW INDEXING TECHNIQUE FOR DATA WAREHOUSES

Adi-Cristina Mitea

 Department of Computer Science, “Lucian Blaga” University of Sibiu

Zaharia Boiu street No. 2 – 4, Sibiu, Romania

Abstract: Data warehouses are special-purpose databases to support decision-making. In data

warehouses indexing is becoming a common feature to accelerate data mining searches that

combine multiple restrictive queries. Different types of indexes had been proposed and some

of them are already implemented. This paper proposes a new kind of join index structure,

which can be useful for multiple join operations. The algorithm to build this type of index

structure is presented. Some queries, which benefit from this kind of join index, are also

presented.

Keywords: indexing techniques, data warehouse, multiple join operations, relational

databases.

1. INTRODUCTION

Data warehouses are special-purpose databases to

support decision-making. Data warehouses collect

information from many sources into a single database.

That information is normally extracted from

operational business applications, is transformed and

validated to verify some forms of data integrity and

then is loaded into a specially designed database

schema.

Data warehouses are usually placed on hardware

platforms that claim high-performance query

capability, both in terms of price-performance and

response time. One efficient way to improve response

time is through indexing techniques.

Data warehouses usually have a relational SQL

interface. Indexing is becoming a common feature to

accelerate data mining searches that combine multiple

restrictive queries. New kind of index structures was

proposed and applied in data warehouses, such as

bitmap index, reverse-key B-trees index, domain index,

join index (Datta et al., 1999), (O’Neil et at., 1997).

Bitmap indexing creates a vector of bits for each row of

the table; sparse bitmaps can be compressed as

appropriate. Reverse-key B-trees indexes create the B-

trees index using a reversed index key. Domain indexes

create an index for a particular application domain

providing efficient access to customized complex data

types. Join indexes (Valduriez, 1987) greatly speed up

joins by applying restrictions on one table as

restrictions on another.

2. THE PROBLEM TO BE SOLVED

A data warehouse usually store a huge volume of data,

which is organized in fact tables and dimension tables.

The dimension tables are linked to fact tables using a

referential integrity constraint.

A “join index” is an index structure, which spans

multiple tables, and improves the performance of joins

of the tables. Typically, one would create a join index

on a fact table, where the indexed column (s) would

belong to a dimension table. A join index is the result

of joining two tables on a join attribute and projecting

the keys of the two tables. To join the two tables means

to use the join index to fetch only the tuples, which

satisfy the join criteria, from the tables followed by a

join of those tuples.

In relational data warehouse systems, it is of interest to

perform a multiple join (a star join) on the fact tables

and their dimension tables. To speed up some kind of

multiple joins, the procedure used is to build join

indexes between fact tables and each of their dimension

tables implied in the multiple join. If the join indexes

are represented in bitmap matrices, a multiple join

could be replaced by a sequence of bitwise operations,

followed by a relatively small number of fetch and join

operations.

My proposal touches exactly that field: the multiple

join between fact tables and their dimension tables.

3. THE PROPOSAL

The index structure I propose is useful when multiple

join operations between tables are needed. In a data

warehouse a lot of queries need multiple join

operations between tables, most of them between fact

tables and their dimension tables. Because these tables

store large volumes of data a join operation is a time-

consuming one. To reduce the cost of performing such

queries, I propose an index structure, which can be

used to eliminate the need to perform the join operation

or to minimize the join total cost.

A multiple join implies at least two join operations

between a fact table and its dimension tables. The basic

idea is to build the index on an index key made by a

combination of columns from the dimension tables

involved in the multiple join. Each dimension table

from the multiple join has one of its columns in the

index key.

The index is created using a command like:

CREATE JOIN INDEX <IndexName>

ON

<FactTable+DimensionTable1+DimensionTable2+..>

(<Column1, Column2,…>)

WHERE

 FactTable.Column1= DimensionTable1.Column1

 AND

 FactTable.Column2= DimensionTable1.Column2

 AND

 ….

The index is build like a B-tree using the index key

values. A leaf node contains the index key value and n-

pointers, one pointer for each table involved in the

I n d e x k e y P o i n t e r P o i n t e r P o i n t e r
 v a l u e K i P 1 P 2 P 3

L e a f n o d e

L i s t o f R O W I D s

I n f o r m a t i o n a b o u t

 f a c t t a b l e

L i s t o f R O W I D s

I n f o r m a t i o n a b o u t

 d i m e n s i o n t a b l e 1

L i s t o f R O W I D s

I n f o r m a t i o n a b o u t
 d i m e n s i o n t a b l e 2

F i g u r e 1 . I n d e x l e a f n o d e s t r u c t u r e w h e n R O W I D s a r e u s e d . .

multiple join. Every pointer points to a contiguous area

containing information about one of the tables from the

multiple join. This information corresponds to the

index key value. If the index key has low selectivity

ROWIDs are used. The pointer points to a list of

ROWIDs, which indicates the rows from the table

which have the same value as the index key. This is

illustrated in figure1. If the index key has high

selectivity bitmaps are used. The pointer points to a

bitmap and also a start ROWID and an end ROWID are

indicated. The start ROWID is the ROWID of the first

row pointed to by the bitmap segment of the bitmap

and the end ROWID is the ROWID of the last row in

the table covered by the bitmap segment (figure 2).

I n d e x k e y P o i n t e r P o i n t e r P o i n t e r
 v a l u e K i P 1 P 2 P 3

L e a f n o d e

S t a r t E n d B i t m a p
R O W I D R O W I D

I n f o r m a t i o n a b o u t f a c t t a b l e

F i g u r e 2 . I n d e x l e a f n o d e s t r u c t u r e w h e n b i t m a p s a r e u s e d .

S t a r t E n d B i t m a p
R O W I D R O W I D

I n f o r m a t i o n a b o u t

d i m e n s i o n t a b l e 1

S t a r t E n d B i t m a p
R O W I D R O W I D

I n f o r m a t i o n a b o u t
d i m e n s i o n t a b l e 2

The algorithm for building the index structure in the

case of lists of ROWIDs is as follow:

TEMP=

JOIN(FactTable,DimensionTable1,DimensionTable2,..

)

IndexKey=(Column1, Column2,..)

/* obtain the list of ROWIDs from the fact table for

each different value of the index key*/

ListFactTable={}

do while not eof()TEMP

 if ((ColumnlTEMP,Column2TEMP,..)=IndexKey)

and (not eof()TEMP)

 ListFactTable=ListFactTable+ROWIDFactTable

 skipTEMP 1

 else

 skipTEMP 1

 endif

enddo

/* obtain the list of ROWIDs from the dimension table

for each different value of the index key*/

/* this part of the algorithm is executed once for each

dimension table participating in the multiple join*/

ListDimensionTable={}

for i=1 to NListFactTable

 begin

 fetch row with ROWIDi from FactTable

 read ForeignKeyFactTable

 find row j from DimensionTable where

 PrimaryKeyDimensionTable=ForeignKeyFactTable

 ListDimensionTable=ListDimensionTable+ROWIDDimensionTable

 end

If the bitmaps are used for the index structure the

algorithm is a little bit different:

/* determine the bitmaps, the start ROWIDs and the

end ROWIDs from the fact table for each different

value of the index key*/

BitmapFactTable=’’

StartROWIDFactTable=s

EndROWIDFactTable=e

Start=0

do while not eof()TEMP

 if ((ColumnlTEMP,Column2TEMP,..)=IndexKey)

and (not eof()TEMP)

 if Start=0

 StartROWIDFactTable=ROWIDFactTable

 Start=1

 endif

 BitmapFactTable=BitmapFactTable+’1’

 EndROWIDFactTable=ROWIDFactTable

 skipTEMP 1

 else

 BitmapFactTable=BitmapFactTable+’0’

 skipTEMP 1

 endif

enddo

/* determine the bitmaps, the start ROWIDs and the

end ROWIDs from the dimension table for each

different value of the index key*/

/* this part of the algorithm is executed once for each

dimension table participating in the multiple join*/

StartROWIDDimensionTable=s

EndROWIDDimensionTable=e

BitmapDimensionTable=’000..00’

/*number of 0 bits is equal to number of rows of

DimensionTable*/

for i=1 to NRowFactTable

 if bitiBitmapFactTable=’1’

 fetch row with ROWIDi from FactTable

 read ForeignKeyFactTable

 find row j from DimensionTable where

 PrimaryKeyDimensionTable=ForeignKeyFactTable

 BitmapDimensionTable[j]=’1’

 if StartROWIDDimensionTable> ROWIDDimensionTable

 StartROWIDDimensionTable= ROWIDDimensionTable

 endif

 if EndROWIDDimensionTable< ROWIDDimensionTable

 EndROWIDDimensionTable= ROWIDDimensionTable

 endif

 end

To illustrate in a proper manner the way the multiple

join index bill be constructed, lets take an example.

Suppose there is a data warehouse, which has a fact

table SALES and three dimension tables PRODUCTS,

CUSTOMERS and TIMES (figure 3).

SALES
PROD_ID

CUST_ID
TIME_ID

…..

PRODUCTS
PROD_ID

PROD_NAME

CATEGORY

UNIT_MEASURE

….

CUSTOMERS
CUST_ID

CUST_NAME

GENDER

BIRTH_DATE

….

TIMES
TIME_ID

DAY_NAME

MONTH_NAME

QUARTER_NAME

…..

Figure 3. The fact table and its dimension tables.

A short example of data for these tables is presented in

figure 4. A multiple join index can be constructed on

the SALES, PRODUCTS and CUSTOMERS tables

using the index key (CATEGORY, GENDER).

Relation R = PRODUCTS
ROWID PROD_ID PROD_

NAME

CATEGORY UNIT_

MEASURE
…

R1 P1 CAT1

R2 P2 CAT2

R3 P3 CAT3

R4 P4 CAT1

R5 P5 CAT2

R6 P6 CAT3

R7 P7 CAT2

Relation S = CUSTOMERS
ROWID CUST_ CUST_ GENDER BIRTH_ …

ID NAME DATE

S1 C1 M

S2 C2 M

S3 C3 F

S4 C4 M

S5 C5 F

S6 C6 F

S7 C7 M

Relation T = SALES
ROWID PROD_ID CUST_ID TIME_ID ….

T1 P1 C1

T2 P2 C3

T3 P1 C4

T4 P1 C1

T5 P4 C3

T6 P3 C4

T7 P6 C5

T8 P7 C5

T9 P7 C6

T10 P1 C3

Figure 4. Data examples.

The index will be created using the command:

create join index INDEX01

on SALES+PRODUCTS+CUSTOMERS

(CATEGORY, GENDER)

where SALES.PROD_ID=PRODUCTS.PROD_ID

and

SALES.CUST_ID=CUSTOMERS.CUST_ID

If the index key selectivity is high the index structure

will contain bitmaps. For the given example, the

bitmaps will be as in figure 5.

Index

 key

 value

T

Start

RO

WID

T

End

RO

WID

T

Bitmap

R

Start

RO

WID

R

End

RO

WID

R

Bitmap

S

Start

RO

WID

S

End

RO

WID

S

Bitmap

CAT1

M

T1 T4 1011000000 R1 R1 1000000 S1 S4 100100

CAT1F T5 T10 0000100001 R1 R4 1001000 S3 S6 001011

CAT2F T2 T9 0100000110 R2 R7 0100001 S3 S3 001000

CAT3

M

T6 T6 0000010000 R3 R3 0010000 S2 S2 001000

CAT3F T7 T7 0000001000 R6 R6 0000010 S5 S5 000010

Figure 5. The bitmaps from the index.

This type of index eliminate the need to perform join

operations between tables for queries like:

“How many products from category X were sold to

customers with gender Y?”

“How many products from category X were sold to

customers?

“How many products were sold to customers with

gender Y?”

“How many products were sold?”

“How many customers with gender Y bought products

from category X?

“How many customers with gender Y bought

products?”

“How many customers bought products from category

X?”

“How many customers bought products?”

The answer can be obtained directly from the index in

such cases. For example, for the first query the answer

is equivalent with number of bits set to “1” from the T

bitmap.

The index also reduce the cost of join operations for

queries like:

“Which are the products from category X sold to

customers who has Y gender?”

 “Which are the products from category X sold to

customers?”

“Which are the products sold to customers who has Y

gender?”

 “Who are the customers with gender Y who bought

products from category X?”

“Who are the customers who bought products from

category X?”

“Who are the customers with gender Y who bought

products?”

“Who are the customers who bought products?”

Now, I am in the implementation phase with this new

kind of multiple join index. When the tests will be

finished the final conclusions can be made. For now, is

clear that for some kind of queries that type of index

provide better performance than simple join indexes,

which need to be combined to obtain the result.

4. CONCLUSION

This paper presents a new type of join index, which can

be used for multiple join operations between tables in a

relational database. For some queries the index will

eliminate the need to perform the join operation, saving

in this manner a lot of time and improving system

performance. For other kind of queries the index will

reduce the time needed to perform the join operation,

obtaining also a system performance improvement.

This kind of index structure can be interesting because

it brings together, under one single roof, information

from different tables which are searched together using

the same search criteria. This index is bigger than a

traditional join index, but it eliminates the need to

combine the results of several indexes to obtain the

final result. System performance can be improved in

this manner. The number of queries, which can find

answers directly from index is greater, also.

The process of testing this new type of join index had

to be continued to analyze all advantages or

disadvantages of this new kind of join index.

REFERENCES

(1992) Oracle7 Server Concepts Manual. Oracle

Corporation, Redwood City, CA.

(1999) Oracle8i Concepts. Oracle Corporation, Release

8.1.5.

(2002) Oracle9i Concepts .Oracle Corporation, Release

9.1.2.

A. Datta, K. Ramamritham, H. Thomas, (1999), Curio:

A novel solution for efficient storage and indexing

in data warehouses, Proceedings of the

International Conference on Very Large

Databases, 730-733.

P. O’Neil, D. Quass, (1997), Improved query

performance with variant indexes, Proceeding of

ACM SIGMOD International Conference on

Management of Data, 38-49.

P. Valduriez, (1987), Join indices, ACM Transactions

on Database Systems, 12(2), 218-

